

ANSWERS

## DAWSON COLLEGE DEPARTMENT OF CHEMISTRY AND CHEMICAL TECHNOLOGY ORGANIC CHEMISTRY I 202-BZF-05 Fall 2009

#### **Final Examination**

| Insti                     | ructors: D. Adley, B. S                                                                                                                                                                                                                                                                                                                      | eivewright, l                                                                                                                            | E. Cadieux, S. Holde                                                                                                                                           | en, H. Khouri, & S.                 | Mäkinen       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|
|                           | Write your name here                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                |                                     | _             |
|                           | Sign your name here:                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                |                                     | <b>-</b> .    |
| Inst                      | ructions:                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                |                                     |               |
| 1. 2. 3. 4. 5. 6. 7 8. 9. | This examination pack check that there are no Fill in your name before Answer ALL question Answer the questions your right to contest your right to contest your right to contest your telested to provide CLEARLY, me Do not detach any of the Please note that NON-MODELS are permitted Whenever required, standard your attention is draw | pages missing answering s in the space in ink and do our grade will essy answers the sheets in the PROGRAM and but cannot cructural form | the questions.  e provided. not use liquid white light be compromised. will not be marked. this booklet. MABLE CALCULATE be passed around. unlae must be shown | te or correction tap ATORS and MOLE | e, otherwise, |
|                           | king Scheme:                                                                                                                                                                                                                                                                                                                                 | <u>/6</u>                                                                                                                                | 3/4                                                                                                                                                            | 4/5                                 |               |
| 5                         | <u>/6</u> 6                                                                                                                                                                                                                                                                                                                                  | <u>/2</u>                                                                                                                                | 7. <u>/4</u>                                                                                                                                                   | 8                                   |               |
| 9                         | <u>/9</u> 10                                                                                                                                                                                                                                                                                                                                 | <u>/1</u>                                                                                                                                | 11                                                                                                                                                             | 12/4                                |               |
| 13.                       |                                                                                                                                                                                                                                                                                                                                              | <u>/5</u>                                                                                                                                | 15. <u>/6</u>                                                                                                                                                  | 16/4                                |               |
| 17.                       | <u>/10</u> 18                                                                                                                                                                                                                                                                                                                                | <u>/2</u>                                                                                                                                | 19/4                                                                                                                                                           | .*                                  |               |
|                           | TOTAL                                                                                                                                                                                                                                                                                                                                        | <u>/100</u>                                                                                                                              | TOTAL /40                                                                                                                                                      | <u>)</u>                            |               |

Give IUPAC names for the following compounds. Include R/S & E/Z nomenclature where 1. necessary. (2 pts each, total 12 pts)

$$CH_{3}(H)$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}CH_{3}(H)$$

$$CH_{2}CH_{3}(H)$$

# ¢Ì⇒S

the cyclopero Byl has higher loc course it how CH out to chural c. Others are

(1S, 3R)-1-t-butyl-3-methylcyclohexane

a. Draw the Newman projection formulas of the most stable conformation and the least stable conformation of butane, along the C2-C3 bond. (2 pts)



most stuble



least stable

- b. For the least stable conformation, the relative positions of the two methyl groups is best described as \_\_\_\_\_\_\_\_. (1 pt)
- c. Which of the following corresponds to the potential energy diagram for the rotation about the C2-C3 bond of butane? (1 pt)

Answer: A



 $\bigcup_{\mathbb{B}}$ 



Angle of rotation

d. List two reasons responsible for making the least stable conformation higher in energy.
 (2 pts)

Torsional phain exists when the directral angle is not 60°. Torsional phrain exists in ethouse In addition when the H's in ethouse are replaced by alkyl groups then steric phrain due to Van der Waals repulsion occurs.

3. Draw the mechanism to account for the given product using curved arrows. (4 pts)

$$H-CC$$

a. Draw the mechanism to account for the given products using curved arrows. (4 pts)

4.

b. Which product, A or B, is the major product of the above reaction under these conditions? (1 pt)

a. Draw the mechanism of the reaction below. Use the Br-Br<sup>+</sup>-Fe Br<sub>3</sub> as the electrophile. Show all resonance structures of the carbocation (arenium ion) intermediate. (4 pts)

b. Draw the resonance structures of the carbocation intermediate that would lead to the meta product. Use these structures to explain why the meta product is not formed to any significant quantities. (2 pts)

6. Arrange the following substrates in order of their increasing S<sub>N</sub>2 reactivity with NaCN. (2 pts)



7. Draw the mechanism which accounts for the formation of the major organic product, when the two compounds are allowed to react. Draw in 3D when necessary. Use curved arrow notation. Draw and indicate clearly the structure of the major product. (4 pts)

8. Show the required reagents to synthesize the following compounds: Mechanisms are **not** required. Give the final product in the last box. (5 pts)



9. Show the required steps to synthesize the following compounds. Show all intermediate products. Use any inorganic and organic reagents necessary. Mechanisms are not required. (9 pts)

a. Br Clly b.

allylic Joroman Con



10. Explain why the following reaction does not occur. (1 pt)

Does not work OU is a strong base and a poor leaving group.

products

a. Give the structural formulae of all possible monobromination products for the following reaction. Circle the major product. (3 pts)



b. Draw a mechanism for the production of the 2° alkyl halide. (4 pts)

The compounds below have the  $pK_n$  values 4.7, 16, 45, and 62. Insert the correct  $pK_n$  value in the box for each compound. (4 pts)



- Which of the two compounds has a higher boiling point? Explain. (4 pts) 13.
  - a. CH<sub>3</sub>CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>CH<sub>2</sub>-O-H or

no H

beaker dipole-dipole interactions.

b. <sub>.</sub>





More branched less senface area.



less branched

more surface avec stronger Van der Waals

a. Draw the 3D formulae of the products of the following reaction. (4 pts)



15. Give the structures of significant organic products. For each reaction, indicate in the box whether the major mechanism is S<sub>N</sub>1, S<sub>N</sub>2, E1, or E2. (2 pts each, total 6 pts)

### 16. What is the relationship between the following molecules? Place your answer in the box. (4 pts)



17. Give the structural formulas of the significant organic products for the following reactions. For the reactions with more than one significant organic product, circle the major product. Include stereochemistry where applicable. (2 pts each, total 10 pts)

a)
$$\begin{array}{c}
\text{Part } \\
\text{CH}_{3}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3} \\
\text{CH}_{3}
\end{array}$$

18. When subjected to ozonolysis, followed by treatment with zinc and water, compound A (C<sub>5</sub>H<sub>6</sub>) gives the following products: (2 pts)

$$\mathbf{A} \qquad \xrightarrow{\begin{array}{c} 1) \ \mathrm{O_3} \\ \end{array}} \qquad \overset{\mathsf{O}}{\parallel} \qquad \overset{\mathsf{O}}{\parallel} \qquad \overset{\mathsf{O}}{\parallel} \qquad + \qquad \overset{\mathsf{O}}{\parallel} \qquad \overset{\mathsf{O}}{\parallel} \qquad \overset{\mathsf{O}}{\parallel} \\ 2) \ Z\mathrm{n, H_2O} \qquad \qquad \overset{\mathsf{O}}{\mathsf{HC}} \qquad \overset{\mathsf{O}}{\mathsf{CH}} \qquad + \qquad \overset{\mathsf{O}}{\parallel} \qquad \overset{\mathsf{O}}{\parallel}$$

What is the structure of compound A?







- 19. List the following in order of increasing stability. (4 pts)
  - a. 1-octene



- b. 1,2-dimethylcyclohexene
- c. 3-methylpent-2-ene
- d. (E)-2-heptene humb
- e. (Z)-2-heptene  $\dot{\mathbf{u}}$





Which of the above compounds will release the most energy upon hydrogenation?



|             |                  |                  | _[             |                                       | . F :-                                      |    |                    |                    | T    |                     | -      | r              |                     |                   | Τ   |              |                     | <del></del> |                        |                   | 7          |                     |                       |          |                                                              | 'hler                  | ام عأد                                           | leme             |                          |
|-------------|------------------|------------------|----------------|---------------------------------------|---------------------------------------------|----|--------------------|--------------------|------|---------------------|--------|----------------|---------------------|-------------------|-----|--------------|---------------------|-------------|------------------------|-------------------|------------|---------------------|-----------------------|----------|--------------------------------------------------------------|------------------------|--------------------------------------------------|------------------|--------------------------|
|             |                  | <b>₽</b>         | VIIIA          | ~                                     | Hellym<br>4.0026                            | =  | Ne                 | Naon<br>20,180     | 單    | Ar                  | 39.948 | 36             | 조                   | Krypton<br>83.798 | 5.4 | Xe           | Xeno<br>131.29      | 86          | RH                     | Radon<br>(222)    |            |                     |                       | ĺ        | <i>y</i> 3                                                   | 2100                   | -A E                                             | cme              | 1115                     |
|             |                  | S1               |                |                                       | 17<br>VIIA                                  | 6  | 止                  | Fluorine<br>18,998 | 17   | <u></u> ပြ          | 35,453 | £.             | 'n                  | Bromine<br>79,904 | 53  | : <b></b>    | lodine<br>126.90    | 85          | At                     | Astaline<br>(210) |            |                     |                       | 7.       |                                                              | Lutellum               | 174.97                                           |                  | awrenclum<br>(262)       |
|             | Main Groups      | p olock elements | •              | !                                     | 16.<br>VIA                                  | 8  | 0                  | 0xygen<br>15,999   | . 16 | တ ္ဖို              | 32,065 | . 34           | Se                  | 58(enlum<br>78,95 | 52  | <del>o</del> | Tellurlum<br>127.60 | 84          | <u>Б</u>               | Folonium<br>(209) |            |                     |                       | 15       | , Y                                                          | Yllerblum              | 10.04                                            | N C              |                          |
|             | Mair             |                  |                | ļ                                     | Z A                                         | 7  | Z                  | 14,007             | 5    | Photophorus         | 30,974 | 33             | As                  | 74.922            | 51  | Sb           | Aniimony<br>121.78  | 83          | m į                    | 206.98            | ,          |                     |                       | <u> </u> | E                                                            |                        | +                                                | Md               | Ē                        |
|             | •                |                  |                | . 1                                   | IVA                                         | 9  | ပ<br>မြ            | 12,011             | 14   | <u>က</u> မို့       | 28,086 | 32             | Ge .                | . 72.84           | 50  | S,           | 118,71              | 82          | <del>م</del> ۔         | 207.2             | 114        | ond                 | (289)                 | 189      | щ                                                            |                        | ╁                                                |                  |                          |
|             | S I              |                  | /              |                                       | e ĕ                                         | ı. | ന് 🏻               | 10,811             | က    | Aluminum.           | 28.982 | <u>ب</u> (     |                     | 89.723            | 49  |              | 114,82              | <u>.</u>    | F                      | 204,38            |            |                     |                       | 29       | 유                                                            | Holmlum<br>164.83      | 66                                               |                  | Ē                        |
| •           | ELEMENTS         |                  | •              | (<br>(<br>(<br>(                      | tation +                                    | •  | •                  |                    | j→   | 22                  | 2      | <b>ا</b> ع     | C S                 | 65,400            | 48  | O E          | 112.41              | dg :        | D A                    | . 200,59          | 112        | ann<br>O            | (285)                 | 99       | S                                                            | Ε                      |                                                  | ざ                | Californium Eli<br>(251) |
|             | THE EL           | •                |                | E E E E E E E E E E E E E E E E E E E | Chemical Abstracts Service group notation → |    |                    |                    |      | <u></u>             | 2 2    | <sub>ا</sub> د | ا<br>ا<br>ا         | 83,548            | 47  | A<br>g≅      | 107,67              | . 62        | AC<br>B                | 196.97            |            | ם<br>ממס            | (2/2)                 | 8        | <del>-</del>                                                 | Terblum Di             |                                                  | 異                | Berkellum Cr<br>(247)    |
|             | 0 F T            | -                |                | ILIPAC.                               | ots Service                                 |    | *                  |                    |      | 10                  | ACIID  |                | Nickel              | 58,693            | 9 . | Palladium    | 106,42              | ج<br>13 ج   | Platfinum<br>Platfinum | 195.08            | E .        |                     |                       | 64       |                                                              | Gadolinium<br>157.25   | 96                                               |                  | Curlum B (247)           |
|             | TABLE            |                  |                |                                       | oal Abstra                                  |    | tals               | ts /               |      | 9                   | 276    | ء ر            | ) iii               | 58,833            | £ . | Thodhum      | 102.81              | <u> </u>    | Tight<br>English       | 182.22            | £01        | Melmerlum<br>(288)  | -<br>/<br>/<br>/<br>/ | <br>B    | 77.0                                                         | Europlum . G<br>151.96 | 96                                               |                  | Americium<br>(245)       |
| ÷           | •                |                  |                | •                                     | Chemic                                      |    | Transition Metals  | d block elements   |      | 8<br>VIIIB.         | 2 %    | i II           | ) E                 | 55.845            | ÷ ( | Futhenlum    | 101.07              | ٠ (         | D E                    | 190.23            | 2 <b>1</b> |                     | 7 6                   | - 29     |                                                              | 38/marilum 150,36      | - 94                                             | Pu               |                          |
|             | ERIODIC          | •                |                |                                       | Carbon 12 011                               |    | Transi             | A bloc             | •    | 7<br>VIIR           | 35     | M              | Manganese           | 24.938            |     | Technetium   | (98)                | 6 D         |                        | 186.21            | <u> </u>   | Bohrium .:          |                       |          |                                                              | (145)                  |                                                  | d<br>N           |                          |
|             | <u>ٿ</u>         |                  | Į              | <u> </u>                              |                                             |    |                    |                    |      | e<br>ViB            | 24     | Ċ              | E                   | 0),8EG            | ) × | Ę            | 77                  | * / / /     |                        | 163,64            | - C        | Seaborgium<br>(266) |                       |          | ָ<br>צ<br>ג                                                  |                        | 35                                               |                  | 238.03                   |
|             |                  |                  |                | Atomic number-<br>Symbol -            | Name (IUPAC) - Atomic mass -                |    |                    |                    |      | S<br>VB             | 23     | >              | E c                 | 1                 | - 1 |              | 7.3                 | - <b>L</b>  | <u>.</u> .             | 105               |            |                     | П                     |          | ֓֞֞֞֝֞֞֞֞֝֞֜֞֝֞֝֓֞֝֞֝֞֞֝֓֞֞֝֡֓֞֞֡֞֞֩֞֞֞֞֞֡֓֞֡֞֡֡֓֞֡֞֡֞֡֡֡֡֡֡ | 140,91                 | <u>-</u>                                         | _                | 231,04                   |
|             |                  |                  |                | G                                     | Nan                                         |    |                    |                    |      | 4<br>IVB            | 22     | F              | Thanlum<br>47.887   | \$                | ,   | Zirconitum   | 72                  | Į           |                        | +                 | , in       | Ę                   | 2                     | -<br>3 ( |                                                              | CI                     |                                                  |                  | . 232,04                 |
|             |                  |                  | <u>, ,</u>     | — <u>-</u>                            |                                             |    | -                  |                    | → ,  | E III               | 21     | Sc             |                     | 39                |     | Yttrium ;    | 57                  | *           |                        | 89                | #Ac        |                     | <u>L</u>              |          |                                                              |                        |                                                  |                  |                          |
| roups       | ements /         |                  |                | α.                                    | HIA<br>4                                    | Be | Baryflum<br>B.0122 | 12                 | Ma   | Magneslum<br>24,305 | 20     |                | Catclum 6<br>40,078 | 38                | ζ.  |              | -                   | Ba          |                        | ╁                 | _          | Radlum . A (228)    | •                     | . 1      | Lannanide Series                                             | •                      | ָּ<br>֓֞֞֜֞֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֡֓֓֡֓֡ | * Acultude Senes | :·<br>                   |
| Main Groups | š block elements | - ≰              | <del>-</del> ' | Hydrogen                              | 3                                           |    | F                  | =                  |      |                     | 19     |                | Polasslum<br>39,098 | 37                | Bb  |              | -                   | Cs          |                        | <del> </del>      |            | Francium F<br>(223) |                       | 7        | 4                                                            |                        | 2                                                |                  |                          |
| _           |                  | ٔ جر             |                |                                       |                                             |    |                    | l                  |      | !                   |        | _              | •                   | [                 |     |              | Ц                   |             |                        |                   |            | <u>.</u>            |                       |          |                                                              |                        |                                                  |                  | .*                       |

\* Main-Group elements are also called Representative Elements.