DAWSON COLLEGE
 DEPARTMENT OF CHEMISTRY AND CHEMICAL TECHNOLOGY ORGANIC CHEMISTRY I 202-BZF-05
 Fall 2009

Final Examination

Instructors: D. Adley, B. Seivewright, E. Cadieux, S. Holden, H. Khouri, \& S. Mäkinen

Write your name here: \qquad
Sign your name here: \qquad

Instructions:

1. This examination package contains $\mathbf{1 9}$ questions and $\mathbf{1 6}$ pages. It is your responsibility to check that there are no pages missing.
2. Fill in your name before answering the questions.
3. Answer ALL questions in the space provided.
4. Answer the questions in ink and do not use liquid white or correction tape, otherwise, your right to contest your grade will be compromised.
5. Write CLEARLY, messy answers will not be marked.
6. Do not detach any of the sheets in this booklet.

7 Please note that NON-PROGRAMMABLE CALCULATORS and MOLECULAR MODELS are permitted but cannot be passed around.
8. Whenever required, structural formulae must be shown complete.
9. Your attention is drawn to the college policy on cheating. This policy will be enforced.

Marking Scheme:

1. $\quad / 12$
2.

3.

4. $\quad 15$
5.
6.

7. $\quad 14$
8. \qquad
9. $\quad 19$
10. $\quad 11$
11. $\quad 17$
12. \qquad
13. $\quad 14$
14. \quad / $/ 5$
15. $\quad / 6$
16. \qquad
17._ $\quad 110$
18. $\quad 12$
19. $\quad 14$

TOTAL $\quad / 100$
TOTAL 140

1. Give IUPAC names for the following compounds. Include $R / S \& E / Z$ nomenclature where necessary. (2 pts each, total 12 pts)
a.

b.

c.

d.

f.

2.

a. Draw the Newman projection formulas of the most stable conformation and the least stable conformation of butane, along the C2-C3 bond. (2 pts)

most stable

lest stable
b. For the least stable conformation, the relative positions of the two methyl groups is best described as \qquad eclipsed . (1 pt)
c. Which of the following corresponds to the potential energy diagram for the rotation about the $\mathrm{C} 2-\mathrm{C} 3$ bond of butane? (1 pt)

Answer: A

A

d. List two reasons responsible for making the least stable conformation higher in energy. (2 pts)
$\frac{\text { Torsional strain exists when the dihedral angle }}{60^{\circ}}$ is not 60°. Torsional strain exists in ethane
Sh audition when the H's in thane are replaced by alkyl groups then steric strain due to van der Wards repulsion occurs.
3. Draw the mechanism to account for the given product using curved arrows. (4 pts)

b. Which product, A or B , is the major product of the above reaction under these conditions? (1 pt)

Answer: A
1,2 adder preferred
athens t tr en
5.
a. Draw the mechanism of the reaction below. Use the $\mathrm{Br}-\mathrm{Br}^{+}-\mathrm{Fe}^{-}-\mathrm{Br}_{3}$ as the electrophile. Show all resonance structures of the carbocation (arenium ion) intermediate. (4 pts)

$$
\vec{\leftarrow}
$$

4 peon. structures!

$$
\uparrow
$$

b. Draw the resonance structures of the carbocation intermediate that would lead to the if Br meta product. Use these structures to explain why the meta product is not formed to any significant quantities. (2 pts)

With meta attack
res, phructures possible.
6. Arrange the following substrates in order of their increasing $\mathrm{S}_{\mathrm{N}} 2$ reactivity with $\mathrm{NaCN} .(2$ pts)

pterio crowding
io 5 member trains plate

slowest

B

B
fastest
7. Draw the mechanism which accounts for the formation of the major organic product, when the two compounds are allowed to react. Draw in 3D when necessary. Use curved arrow notation. Draw and indicate clearly the structure of the major product. (4 pts)

not a sod conformer. t- Bu should be in equiterial post.
 equitorial
vice-vera.

are anti H_{A} and eguitorial
\& rice-versa. note only H_{A} and
areanticoplancur
axial becomes

loss of HCl on $C_{5}-C_{6}$
8. Show the required reagents to synthesize the following compounds: Mechanisms are not required. Give the final product in the last box. (5 pts)

NBS or $\mathrm{Br}_{2}, \mathrm{hV}$

Allyyuc bromination

halo lyydrin formation

alkyl halide

9. Show the required steps to synthesize the following compounds. Show all intermediate products. Use any inorganic and organic reagents necessary. Mechanisms are not required. (9 pts)
a.

b.

 $\underbrace{}_{\substack{\mathrm{CO}_{3} \mathrm{CH}_{2} \mathrm{Cl}_{\mathrm{C}}-\mathrm{CH}_{3} \\ \mathrm{Br}}}$

$$
\frac{\mathrm{CH}_{3} \mathrm{ONa}}{\mathrm{CH}_{3} \mathrm{OH}}
$$

ally lu brominabiza.
c.

10. Explain why the following reaction does not occur. (1 pt)

Does not work our is a strong base and a poor leaning group.
11.

3 products.
a. Give the structural formulae of all possible monobromination products for the following reaction. Circle the major product. (3 pts)

b. Draw a mechanism for the production of the 2° alkyl halide. (4 pts)

12. The compounds below have the $\mathrm{p} K_{\mathrm{a}}$ values $4.7,16,45$, and 62 . Insert the correct $\mathrm{p} K_{\mathrm{a}}$ value in the box for each compound. (4 pts)

$\mathrm{p} K_{\mathrm{a}}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
45

62

4.7

13. Which of the two compounds has a higher boiling point? Explain. (4 pts)
a.

$$
\begin{aligned}
& \text { a. } \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \\
& \text { no } \mathrm{H} \\
& \text { bonding }
\end{aligned}
$$

or

weceber dipoledipole interactions.
b.

or

less surface urea.
more surface area Ahronger Van der Wails huller B. Pt
14.
a. Draw the 3D formulae of the products of the following reaction. (4 pts)

b. Will the final solution be optically active? (1 pt) 50% SS
No it is a reccemie mixture
$50 \% R R$

15. Give the structures of significant organic products. For each reaction, indicate in the box whether the major mechanism is $\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2$, E1, or E2. (2 pts each, total 6 pts)
a)

c)

16. What is the relationship between the following molecules? Place your answer in the box. (4 $\mathrm{pts})$

17. Give the structural formulas of the significant organic products for the following reactions. For the reactions with more than one significant organic product, circle the major product. Include stereochemistry where applicable. (2 pts each, total 10 pts)
a)
much nub.

b)

c)

 curboccetion (Arab. by
$\begin{aligned} & \mathrm{H}_{3} \\ & \mathrm{Na}\end{aligned}$ trans alkene
e)

18. When subjected to ozonolysis, followed by treatment with zinc and water, compound A $\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)$ gives the following products: (2 pts)

What is the structure of compound A?

foin $A+B$

19. List the following in order of increasing stability. (4 pts)
a. 1-octene

b. 1,2-dimethylcyclohexene
c. 3-methylpent-2-ene
d. (E)-2-heptene huns

e. (Z)-2-heptene cis

Which of the above compounds will release the most energy upon hydrogenation?

* Main-Group elements are also called Representative Elements.

