L'Hôpital's Rule

Let *a* represent a (finite) real number or ∞ or $-\infty$.

Suppose $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$. Then $\lim_{x \to a} \frac{f(x)}{g(x)}$ may or may not exist, and we call the limit an indeterminate form of type $\frac{0}{2}$.

Similarly, suppose $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$. Then $\lim_{x \to a} \frac{f(x)}{g(x)}$ may or may not exist, and we call the limit an **indeterminate form of type** $\frac{\infty}{\infty}$.

L'Hôpital's Rule

Suppose f and g are differentiable functions and that $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminate form of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ provided that the limit on the right exists.

Note:

- If the limit on the right does not exist (is ∞ or $-\infty$) then the limit on the left does not exist.
- If the limit on the right still gives an indeterminate form of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$, we keep using L'Hôpital's Rule (or a factoring or rationalizing technique) as needed.
- There exist other types of indeterminate forms, such as $0 \cdot \infty$ and $\infty \infty$, to be discussed later in this section.

Example 1 Find $\lim_{x \to 2} \frac{5x^3 - 13x^2 + 6x}{4x^2 - 13x + 10}$

Since $\lim_{x \to 2} (5x^3 - 13x^2 + 6x) = 0$ and $\lim_{x \to 2} (4x^2 - 13x + 10) = 0$ we can apply l'Hôpital's Rule.

$$\lim_{x \to 2} \frac{5x^3 - 13x^2 + 6x}{4x^2 - 13x + 10} = \lim_{x \to 2} \frac{15x^2 - 26x + 6}{8x - 13} = \frac{15(2)^2 - 26(2) + 6}{8(2) - 13} = \frac{14}{3}$$

Example 2 Find $\lim_{x \to \infty} \frac{10x+5}{3x^2-7x+4}$

Since $\lim_{x \to \infty} (10x + 5) = \infty$ and $\lim_{x \to 2} (3x^2 - 7x + 4) = \infty$ we can apply l'Hôpital's Rule.

$$\lim_{x \to \infty} \frac{10x+5}{3x^2 - 7x + 4} = \lim_{x \to \infty} \frac{10}{6x - 7} = 0$$

Example 3 Find $\lim_{x \to 0} \frac{e^x}{1 - \cos^2}$

Since $\lim_{x\to 0} (e^x) = 1$ and $\lim_{x\to 0} (1 - \cos x) = 0$ we can NOT apply l'Hôpital's Rule.

$$\lim_{x \to 0} \frac{e^x}{1 - \cos x} = \infty$$

Example 4 Find $\lim_{x \to 0} \frac{\cos x - 1}{e^x - 1}$

Since $\lim_{x\to 0} (\cos x - 1) = 0$ and $\lim_{x\to 0} (e^x - 1) = 0$ we can apply l'Hôpital's Rule.

$$\lim_{x \to 0} \frac{\cos x - 1}{e^x - 1} = \lim_{x \to 0} \frac{-\sin x}{e^x} = \frac{-\sin 0}{e^0} = \frac{0}{1} = 0$$

Example 5 Find $\lim_{x \to 1^+} \frac{7\sqrt{x-1}}{\sin(x-1)}$

Since $\lim_{x \to 1^+} (7\sqrt{x-1}) = 0$ and $\lim_{x \to 1^+} \sin(x-1) = 0$ we can apply l'Hôpital's Rule.

$$\lim_{x \to 1^+} \frac{7\sqrt{x-1}}{\sin(x-1)} = \lim_{x \to 1^+} \frac{\frac{7}{2\sqrt{x-1}}}{\cos(x-1)} = \lim_{x \to 1^+} \frac{7}{2\sqrt{x-1}\cos(x-1)} = \infty$$

Example 6	Find $\lim_{x \to 3} \frac{3\ln(5x+3)}{3\ln(5x+3)}$
Example 0	$r \rightarrow \infty \frac{2 \ln(x+4)}{2 \ln(x+4)}$
	$\chi \rightarrow 00^{-2} m(\chi + 1)$

Since $\lim_{x\to\infty} 3\ln(5x+3) = \infty$ and $\lim_{x\to\infty} 2\ln(x+4) = \infty$ we can apply l'Hôpital's Rule.

$$\lim_{x \to \infty} \frac{3\ln(5x+3)}{2\ln(x+4)} = \lim_{x \to \infty} \frac{\frac{3(5)}{5x+3}}{\frac{2}{x+4}} = \lim_{x \to \infty} \frac{15(x+4)}{2(5x+3)}$$

The limit on the right is also indeterminate (type $\frac{\infty}{\infty}$), so we can apply l'Hôpital's Rule again.

$$\lim_{x \to \infty} \frac{3\ln(5x+3)}{2\ln(x+4)} = \lim_{x \to \infty} \frac{15(x+4)}{2(5x+3)} = \lim_{x \to \infty} \frac{15}{10} = \frac{3}{2}$$

Other types of indeterminate forms

In the event that the limit $\lim_{x \to a} f(x)g(x)$ produces an **indeterminate form of type** $0 \cdot \infty$, we can convert it into an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by writing the product f(x)g(x) as a quotient $f(x)g(x) = \frac{f(x)}{2}$ or $f(x)g(x) = \frac{g(x)}{2}$

$$\frac{1}{\frac{1}{g(x)}} \quad \text{or} \quad f(x)g(x) = \frac{1}{\frac{1}{f(x)}}$$

Example 7 Find $\lim_{x \to 0^+} x \ln x$

Since $\lim_{x\to 0^+} x = 0$ and $\lim_{x\to 0^+} \ln x = -\infty$ the limit is an indeterminate form of type $0 \cdot \infty$. We must first convert this product into quotient $\lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x}}$, which gives an indeterminate form of type $\frac{\infty}{\infty}$. Using l'Hôpital's Rule, we have:

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x \to 0^+} -x = 0$$

Example 8 Find $\lim_{x \to \infty} x \tan\left(\frac{1}{x}\right)$

Since $\lim_{x \to \infty} x = \infty$ and $\lim_{x \to \infty} \tan\left(\frac{1}{x}\right) = 0$ the limit is an indeterminate form of type $0 \cdot \infty$. We can easily convert it into the $\lim_{x \to \infty} \frac{\tan\left(\frac{1}{x}\right)}{\frac{1}{x}}$ which gives an indeterminate form of type $\frac{0}{0}$. Using l'Hôpital's Rule, we have:

$$\lim_{x \to \infty} x \tan\left(\frac{1}{x}\right) = \lim_{x \to \infty} \frac{\tan\left(\frac{1}{x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{-1}{x^2} \sec^2\left(\frac{1}{x}\right)}{\frac{-1}{x^2}} = \lim_{x \to \infty} \sec^2\left(\frac{1}{x}\right) = 1$$

Example 9 Find $\lim_{x \to \infty} x^3 e^{-x^2}$

It is not difficult to see that the limit is an indeterminate form of type $0 \cdot \infty$. We can easily convert it into the quotient $\lim_{x\to\infty} \frac{x^3}{e^{x^2}}$ which gives an indeterminate form of type $\frac{\infty}{\infty}$. Using l'Hôpital's Rule twice, we obtain:

$$\lim_{x \to \infty} x^3 e^{-x^2} = \lim_{x \to \infty} \frac{x^3}{e^{x^2}} = \lim_{x \to \infty} \frac{3x^2}{2xe^{x^2}} = \lim_{x \to \infty} \frac{3x}{2e^{x^2}} = \lim_{x \to \infty} \frac{3}{4xe^{x^2}} = 0$$

In the event that the limit $\lim_{x\to a} [f(x) - g(x)]$ produces an **indeterminate form of type** $\infty - \infty$, we can convert it into a type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by factoring out a common factor, by rationalization, or by using a common denominator.

Example 10 Find $\lim_{x \to \infty} (x - x^2)$

Since $\lim_{x\to\infty} x = \infty$ and $\lim_{x\to\infty} x^2 = \infty$ the limit is an indeterminate form of type $\infty - \infty$. We convert this by factoring a common factor:

$$\lim_{x \to \infty} (x - x^2) = \lim_{x \to \infty} x(1 - x) = -\infty$$

Example 11 Find $\lim_{x \to \infty} \left(x e^{1/x} - x \right)$

Since $\lim_{x\to\infty} xe^{1/x} = \infty$ and $\lim_{x\to\infty} x = \infty$ the limit is an indeterminate form of type $\infty - \infty$. We factor out a common factor to obtain the limit $\lim_{x\to\infty} x\left(e^{1/x}-1\right)$ which is an indeterminate form of type $0\cdot\infty$. We then have to convert it into the quotient $\lim_{x\to\infty} \frac{e^{1/x}-1}{\frac{1}{x}}$ which is now an indeterminate form of type $\frac{0}{0}$. Using l'Hôpital's Rule, we have:

$$\lim_{x \to \infty} \left(x e^{1/x} - x \right) = \lim_{x \to \infty} x \left(e^{1/x} - 1 \right) = \lim_{x \to \infty} \frac{e^{1/x} - 1}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\left(\frac{-1}{x^2} \right) e^{1/x}}{\frac{-1}{x^2}} = \lim_{x \to \infty} e^{1/x} = 1$$

Example 12 Find $\lim_{x \to \infty} (x - \sqrt{x+2})$

It's easily seen that the given limit is of the indeterminate form of type $\infty - \infty$. We can convert it into an indeterminate form of type $\frac{\infty}{\infty}$ using rationalization:

$$\lim_{x \to \infty} (x - \sqrt{x+2}) = \lim_{x \to \infty} (x - \sqrt{x+2}) \left(\frac{x + \sqrt{x+2}}{x + \sqrt{x+2}} \right) = \lim_{x \to \infty} \frac{x^2 - (x+2)}{x + \sqrt{x+2}}$$

And then we apply l'Hôpital's Rule:

$$\lim_{x \to \infty} \left(x - \sqrt{x+2} \right) = \lim_{x \to \infty} \frac{x^2 - (x+2)}{x + \sqrt{x+2}} = \lim_{x \to \infty} \frac{2x - 1}{1 + \frac{1}{2\sqrt{x+2}}} = \infty$$

Example 13 Find $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$

Since $\lim_{x \to 1} \frac{x}{x-1} = \infty$ and $\lim_{x \to 1} \frac{1}{\ln x} = \infty$ the limit is an indeterminate form of type $\infty - \infty$. We must first convert this using a common denominator:

$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \left(\frac{x \ln x}{(x-1) \ln x} - \frac{x-1}{(x-1) \ln x} \right) = \lim_{x \to 1} \frac{x \ln x - x + 1}{(x-1) \ln x}$$

Since $\lim_{x \to 1} (x \ln x - x + 1) = 0$ and $\lim_{x \to 1} (x - 1) \ln x = 0$ the limit is now an indeterminate form of type $\frac{0}{0}$. We can therefore apply l'Hôpital's Rule.

$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \ln x - x + 1}{(x-1) \ln x} = \lim_{x \to 1} \frac{\ln x + \left(\frac{1}{x}\right) x - 1}{\ln x + \left(\frac{1}{x}\right) (x-1)} = \lim_{x \to 1} \frac{\ln x}{\ln x + 1 - \frac{1}{x}}$$

Since the limits of both the numerator and denominator are still 0, we apply l'Hôpital's Rule again.

$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{\ln x}{\ln x + 1 - \frac{1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{1+1} = \frac{1}{2}$$

EXERCISES Find each limit. Use L'Hôpital's Rule where appropriate. Otherwise use a more elementary method.

3. $\lim_{x \to 1} \frac{2x^3 - x^2 - 4x + 3}{3x^3 - 5x^2 + x + 1}$ 1. $\lim_{x \to 3} \frac{2x^2 - 3x - 9}{x^2 - 2x - 3}$ 2. $\lim_{x \to \infty} \frac{4x^3 + x - 3}{x^2 - 5x + 8}$ 4. $\lim_{x \to \infty} \frac{6x-5}{4x^2+7x+9}$ 5. $\lim_{x \to 0} \frac{3x^2+8x}{5x^3}$ 6. $\lim_{x \to \infty} \frac{x^2 - 7x - 10}{6x^2 - x - 1}$ 9. $\lim_{x \to 0^+} \frac{\sin x}{1 - \cos x}$ 8. $\lim_{x \to 0} \frac{x^2 + x}{\sin 3x}$ 7. $\lim_{x \to 0} \frac{1 - e^x}{2x}$ $10. \quad \lim_{x \to 0} \frac{1 - \cos x}{\sin x}$ 11. $\lim_{x \to 0} \frac{\sin 2x}{\sin x}$ 12. $\lim_{x \to 0} \frac{e^x - x - 1}{5r^2}$ 13. $\lim_{x \to \infty} \frac{e^{3x}}{\ln x}$ **15.** $\lim_{x \to 0^+} \frac{\sqrt{x}}{1 - \cos x}$ 14. $\lim_{x \to 1} \frac{x-1}{\sqrt{x-1}}$ 16. $\lim_{x \to \infty} \frac{\sqrt{x-1}}{4x+5}$ 18. $\lim_{x \to \infty} \frac{\ln(x+1)}{\sqrt{x}}$ $17. \quad \lim_{x \to 1} \frac{\ln x}{\sin(x-1)}$ **21.** $\lim_{x \to \infty} \frac{\ln(x-10)}{\ln(4x+1)}$ 20. $\lim_{x \to 1} \frac{e^{x-1} - 1}{(x-1)^3}$ 19. $\lim_{x \to \infty} \frac{e^x + x}{\ln x}$ 22. $\lim_{x \to 0^+} \frac{\sqrt{x}}{\ln(x+1)}$ 23. $\lim_{x \to \infty} \frac{e^{4x}}{e^{3x} + x}$ **24.** $\lim_{x \to 0} \frac{e^{2x} - 1}{e^{5x} - 1}$ **26.** $\lim_{x \to \infty} x^2 e^{-x}$ **27.** $\lim_{x \to \infty} x \tan\left(\frac{2}{x}\right)$ **25.** $\lim_{x \to 0^+} x^3 \ln x$ **29.** $\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{e^{x} - 1} \right)$ **28.** $\lim_{x \to \infty} (x - \sqrt{x^2 + 1})$ **30.** $\lim_{x \to \infty} (\sqrt{x} - x^2)$

SOLUTIONS

1.
$$\lim_{x \to 3} \frac{2x^2 - 3x - 9}{x^2 - 2x - 3} \quad \left(\text{type } \frac{0}{0} \right)$$
$$= \lim_{x \to 3} \frac{4x - 3}{2x - 2} = \frac{9}{4}$$

2.
$$\lim_{x \to \infty} \frac{4x^3 + x - 3}{x^2 - 5x + 8} \quad (\text{type}_{\overline{\infty}})$$
$$= \lim_{x \to \infty} \frac{12x^2 + 1}{2x - 5} \quad (\text{type}_{\overline{\infty}})$$
$$= \lim_{x \to \infty} \frac{24x}{2} = \infty$$

3.
$$\lim_{x \to 1} \frac{2x^3 - x^2 - 4x + 3}{3x^3 - 5x^2 + x + 1} \quad (type \frac{0}{0})$$
$$= \lim_{x \to 1} \frac{6x^2 - 2x - 4}{9x^2 - 10x + 1} \quad (type \frac{0}{0})$$
$$= \lim_{x \to 1} \frac{12x - 2}{18x - 10} = \frac{10}{8} = \frac{5}{4}$$

4.
$$\lim_{x \to \infty} \frac{6x-5}{4x^2+7x+9} \quad (\text{type}_{\overline{\infty}})$$
$$= \lim_{x \to \infty} \frac{6}{8x+7} = 0$$

5.
$$\lim_{x \to 0} \frac{3x^2 + 8x}{5x^3} \quad (type \frac{0}{0})$$
$$= \lim_{x \to 0} \frac{6x + 8}{15x^2} = \infty$$

6.
$$\lim_{x \to \infty} \frac{x^2 - 7x - 10}{6x^2 - x - 1} \quad (\text{type}_{\frac{\infty}{\infty}})$$
$$= \lim_{x \to \infty} \frac{2x - 7}{12x - 1} \quad (\text{type}_{\frac{\infty}{\infty}})$$
$$= \lim_{x \to \infty} \frac{2}{12} = \frac{2}{12} = \frac{1}{6}$$

7.
$$\lim_{x \to 0} \frac{1 - e^x}{2x} \quad \left(\text{type } \frac{0}{0} \right)$$
$$= \lim_{x \to 0} \frac{-e^x}{2} = -\frac{1}{2}$$

8.
$$\lim_{x \to 0} \frac{x^2 + x}{\sin 3x} \quad (\text{type } \frac{0}{0})$$
$$= \lim_{x \to 0} \frac{2x + 1}{3\cos 3x} = \frac{1}{3}$$

9.
$$\lim_{x \to 0^+} \frac{\sin x}{1 - \cos x} \quad \left(\text{type} \frac{0}{0} \right)$$
$$= \lim_{x \to 0^+} \frac{\cos x}{\sin x} = \infty$$

10.
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x} \quad (\text{type} \frac{0}{0})$$
$$= \lim_{x \to 0} \frac{\sin x}{\cos x} = 0$$

11.
$$\lim_{x \to 0} \frac{\sin 2x}{\sin x} \quad \left(\text{type } \frac{0}{0} \right)$$
$$= \lim_{x \to 0} \frac{2\cos 2x}{\cos x} = 2$$

12.
$$\lim_{x \to 0} \frac{e^x - x - 1}{5x^2} \quad \left(\text{type } \frac{0}{0} \right)$$
$$= \lim_{x \to 0} \frac{e^x - 1}{10x} \quad \left(\text{type } \frac{0}{0} \right)$$
$$= \lim_{x \to 0} \frac{e^x}{10} = \frac{1}{10}$$

Dawson College – Mathematics Department – Integral Calculus for Social Science

13.
$$\lim_{x \to \infty} \frac{e^{3x}}{\ln x} \quad (\text{type } \frac{\infty}{\infty})$$
$$= \lim_{x \to \infty} \frac{[3e^{3x}]}{\left[\frac{1}{x}\right]} \quad (\text{type } \frac{\infty}{\infty})$$
$$= \lim_{x \to \infty} 3x e^{3x} = \infty$$

14.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} \quad \left(\text{type} \frac{0}{0} \right)$$
$$= \lim_{x \to 1} \frac{\left[1 \right]}{\left[\frac{1}{2\sqrt{x}} \right]} = 2$$

15.
$$\lim_{x \to 0^+} \frac{\sqrt{x}}{1 - \cos x} \quad \left(\text{type} \frac{0}{0} \right)$$
$$= \lim_{x \to 0^+} \frac{\left[\frac{1}{2\sqrt{x}} \right]}{\left[\sin x \right]}$$
$$= \lim_{x \to 0^+} \frac{1}{2\sqrt{x} \sin x} = \infty$$

16.
$$\lim_{x \to \infty} \frac{\sqrt{x-1}}{4x+5} \quad (\text{type} \frac{\infty}{\infty})$$
$$= \lim_{x \to \infty} \frac{\left[\frac{1}{2\sqrt{x-1}}\right]}{\left[4\right]}$$
$$= \lim_{x \to \infty} \frac{1}{8\sqrt{x-1}} = 0$$

17.
$$\lim_{x \to 1} \frac{\ln x}{\sin(x-1)} \quad \left(\text{type } \frac{0}{0}\right)$$
$$= \lim_{x \to 1} \frac{\left[\frac{1}{x}\right]}{\left[\cos(x-1)\right]} = 1$$

18.
$$\lim_{x \to \infty} \frac{\ln(x+1)}{\sqrt{x}} \quad (\text{type}_{\overline{\infty}})$$
$$= \lim_{x \to \infty} \frac{\left[\frac{1}{x+1}\right]}{\left[\frac{1}{2\sqrt{x}}\right]}$$
$$= \lim_{x \to \infty} \frac{2\sqrt{x}}{x+1} \quad (\text{type}_{\overline{\infty}})$$
$$= \lim_{x \to \infty} \frac{\left[\frac{1}{\sqrt{x}}\right]}{\left[1\right]} = \lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$$

19.
$$\lim_{x \to \infty} \frac{e^x + x}{\ln x} \quad (\text{type} \frac{\infty}{\infty})$$
$$= \lim_{x \to \infty} \frac{[e^x + 1]}{[\frac{1}{x}]}$$
$$= \lim_{x \to \infty} x(e^x + 1) = \infty$$

20.
$$\lim_{x \to 1} \frac{e^{x^{-1}} - 1}{(x - 1)^3} \left(\text{type} \frac{0}{0} \right)$$
$$= \lim_{x \to 1} \frac{e^{x^{-1}}}{3(x - 1)^2} = \infty$$

Dawson College – Mathematics Department – Integral Calculus for Social Science

$$21. \lim_{x \to \infty} \frac{\ln(x-10)}{\ln(4x+1)} (type \frac{\infty}{\infty})$$

$$25. \lim_{x \to 0^+} x^3 \ln x (type 0 \cdot \infty)$$

$$= \lim_{x \to 0^+} \frac{1}{\frac{x}{4x+1}} (type \frac{\infty}{\infty})$$

$$= \lim_{x \to 0^+} \frac{1}{\frac{x}{4x+1}} (type \frac{\infty}{\infty})$$

$$= \lim_{x \to 0^+} \frac{4x+1}{4x-40} (type \frac{\infty}{\infty})$$

$$= \lim_{x \to 0^+} \frac{4x+1}{4x-40} (type \frac{\infty}{\infty})$$

$$= \lim_{x \to 0^+} \frac{x^2}{4} = \frac{4}{4} = 1$$

$$26. \lim_{x \to 0^+} \frac{x^2}{4} = \frac{4}{4} = 1$$

$$26. \lim_{x \to 0^+} \frac{x^2}{4} = \frac{4}{4} = 1$$

$$26. \lim_{x \to 0^+} \frac{x^2}{4} = \frac{4}{4} = 1$$

$$27. \lim_{x \to 0^+} \frac{x^2}{1} (type \frac{\infty}{2})$$

$$= \lim_{x \to 0^+} \frac{\sqrt{x}}{1} (type \frac{0}{0})$$

$$= \lim_{x \to 0^+} \frac{x^2}{2\sqrt{x}} (type \frac{0}{2})$$

$$= \lim_{x \to 0^+} \frac{x+1}{2\sqrt{x}} = \infty$$

$$27. \lim_{x \to 0^+} \frac{x \tan (\frac{2}{x})}{\frac{1}{2}} (type \frac{0}{2})$$

$$= \lim_{x \to 0^+} \frac{4e^{4x}}{2\sqrt{x}} (type \frac{\infty}{2})$$

$$= \lim_{x \to 0^+} \frac{4e^{4x}}{2\sqrt{x}} (type \frac{\infty}{2})$$

$$= \lim_{x \to 0^+} \frac{4e^{4x}}{2\sqrt{x}} (type \frac{\infty}{2})$$

$$= \lim_{x \to 0^+} \frac{4e^{4x}}{2e^{3x} + 1} (type \frac{\infty}{2})$$

$$= \lim_{x \to 0^+} \frac{16e^{4x}}{1} (type \frac{0}{2})$$

$$= \lim_{x \to 0^+} \frac{x(x - \sqrt{x^2 + 1})}{1} (type \infty - \infty)$$

$$= \lim_{x \to 0^+} \frac{x^2 - (x^2 + 1)}{1} (type \frac{0}{2})$$

$$= \lim_{x \to 0^+} \frac{x^2 - (x^2 + 1)}{(x + \sqrt{x^2 + 1})}$$

$$= \lim_{x \to 0^+} \frac{2e^{2x}}{2e^{5x}} = \lim_{x \to 0^+} \frac{2}{2e^{5x}} = \frac{2}{5}$$

29.
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{e^{x} - 1}\right) \quad (type \ \infty - \infty)$$
$$= \lim_{x \to 0^+} \frac{(e^x - 1) - x}{x(e^x - 1)} \quad (type \ \frac{0}{0})$$
$$= \lim_{x \to 0^+} \frac{e^x - 1}{1(e^x - 1) + (e^x)x} \quad (type \ \frac{0}{0})$$
$$= \lim_{x \to 0^+} \frac{e^x}{e^x + (e^x)x + 1(e^x)}$$
$$= \lim_{x \to 0^+} \frac{e^x}{e^x(2 + x)}$$
$$= \lim_{x \to 0^+} \frac{1}{(2 + x)} = \frac{1}{2}$$

30.
$$\lim_{x \to \infty} (\sqrt{x} - x^2) \quad (\text{type } \infty - \infty)$$
$$= \lim_{x \to \infty} \sqrt{x} \left(1 - x^{3/2} \right) = -\infty$$