L'Hôpital's Rule

Let a represent a (finite) real number or ∞ or $-\infty$.
Suppose $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$. Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ may or may not exist, and we call the limit an indeterminate form of type $\frac{0}{0}$.

Similarly, suppose $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$. Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ may or may not exist, and we call the limit an indeterminate form of type $\frac{\infty}{\infty}$.

L'Hôpital's Rule

Suppose f and g are differentiable functions and that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is an indeterminate form of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ provided that the limit on the right exists.

Note:

- If the limit on the right does not exist (is ∞ or $-\infty$) then the limit on the left does not exist.
- If the limit on the right still gives an indeterminate form of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$, we keep using L'Hôpital's Rule (or a factoring or rationalizing technique) as needed.
- There exist other types of indeterminate forms, such as $0 \cdot \infty$ and $\infty-\infty$, to be discussed later in this section.

Example 1 Find $\lim _{x \rightarrow 2} \frac{5 x^{3}-13 x^{2}+6 x}{4 x^{2}-13 x+10}$
Since $\lim _{x \rightarrow 2}\left(5 x^{3}-13 x^{2}+6 x\right)=0$ and $\lim _{x \rightarrow 2}\left(4 x^{2}-13 x+10\right)=0$ we can apply l'Hôpital's Rule.

$$
\lim _{x \rightarrow 2} \frac{5 x^{3}-13 x^{2}+6 x}{4 x^{2}-13 x+10}=\lim _{x \rightarrow 2} \frac{15 x^{2}-26 x+6}{8 x-13}=\frac{15(2)^{2}-26(2)+6}{8(2)-13}=\frac{14}{3}
$$

Example $2 \quad$ Find $\lim _{x \rightarrow \infty} \frac{10 x+5}{3 x^{2}-7 x+4}$
Since $\lim _{x \rightarrow \infty}(10 x+5)=\infty$ and $\lim _{x \rightarrow 2}\left(3 x^{2}-7 x+4\right)=\infty$ we can apply l'Hôpital's Rule.

$$
\lim _{x \rightarrow \infty} \frac{10 x+5}{3 x^{2}-7 x+4}=\lim _{x \rightarrow \infty} \frac{10}{6 x-7}=0
$$

Example $3 \quad$ Find $\lim _{x \rightarrow 0} \frac{e^{x}}{1-\cos }$
Since $\lim _{x \rightarrow 0}\left(e^{x}\right)=1$ and $\lim _{x \rightarrow 0}(1-\cos x)=0$ we can NOT apply l'Hôpital's Rule.

$$
\lim _{x \rightarrow 0} \frac{e^{x}}{1-\cos x}=\infty
$$

Example $4 \quad$ Find $\lim _{x \rightarrow 0} \frac{\cos x-1}{e^{x}-1}$
Since $\lim _{x \rightarrow 0}(\cos x-1)=0$ and $\lim _{x \rightarrow 0}\left(e^{x}-1\right)=0$ we can apply l'Hôpital's Rule.

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{-\sin x}{e^{x}}=\frac{-\sin 0}{e^{0}}=\frac{0}{1}=0
$$

Example $5 \quad$ Find $\lim _{x \rightarrow 1^{+}} \frac{7 \sqrt{x-1}}{\sin (x-1)}$
Since $\lim _{x \rightarrow 1^{+}}(7 \sqrt{x-1})=0$ and $\lim _{x \rightarrow 1^{+}} \sin (x-1)=0$ we can apply l'Hôpital's Rule.

$$
\lim _{x \rightarrow 1^{+}} \frac{7 \sqrt{x-1}}{\sin (x-1)}=\lim _{x \rightarrow 1^{+}} \frac{\frac{7}{2 \sqrt{x-1}}}{\cos (x-1)}=\lim _{x \rightarrow 1^{+}} \frac{7}{2 \sqrt{x-1} \cos (x-1)}=\infty
$$

Example $6 \quad$ Find $\lim _{x \rightarrow \infty} \frac{3 \ln (5 x+3)}{2 \ln (x+4)}$
Since $\lim _{x \rightarrow \infty} 3 \ln (5 x+3)=\infty$ and $\lim _{x \rightarrow \infty} 2 \ln (x+4)=\infty$ we can apply l'Hôpital's Rule.

$$
\lim _{x \rightarrow \infty} \frac{3 \ln (5 x+3)}{2 \ln (x+4)}=\lim _{x \rightarrow \infty} \frac{\frac{3(5)}{5 x+3}}{\frac{2}{x+4}}=\lim _{x \rightarrow \infty} \frac{15(x+4)}{2(5 x+3)}
$$

The limit on the right is also indeterminate (type $\frac{\infty}{\infty}$), so we can apply l'Hôpital's Rule again.

$$
\lim _{x \rightarrow \infty} \frac{3 \ln (5 x+3)}{2 \ln (x+4)}=\lim _{x \rightarrow \infty} \frac{15(x+4)}{2(5 x+3)}=\lim _{x \rightarrow \infty} \frac{15}{10}=\frac{3}{2}
$$

Other types of indeterminate forms

In the event that the limit $\lim _{x \rightarrow a} f(x) g(x)$ produces an indeterminate form of type $0 \cdot \infty$, we can convert it into an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by writing the product $f(x) g(x)$ as a quotient $f(x) g(x)=$ $\frac{f(x)}{\frac{1}{g(x)}}$ or $f(x) g(x)=\frac{g(x)}{\frac{1}{f(x)}}$.

Example $7 \quad$ Find $\lim _{x \rightarrow 0^{+}} x \ln x$
Since $\lim _{x \rightarrow 0^{+}} x=0$ and $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$ the limit is an indeterminate form of type $0 \cdot \infty$. We must first convert this product into quotient $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}$, which gives an indeterminate form of type $\frac{\infty}{\infty}$. Using I'Hôpital's Rule, we have:

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-x=0
$$

Example $8 \quad$ Find $\lim _{x \rightarrow \infty} x \tan \left(\frac{1}{x}\right)$
Since $\lim _{x \rightarrow \infty} x=\infty$ and $\lim _{x \rightarrow \infty} \tan \left(\frac{1}{x}\right)=0$ the limit is an indeterminate form of type $0 \cdot \infty$. We can easily convert it into the $\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{1}{x}\right)}{\frac{1}{x}}$ which gives an indeterminate form of type $\frac{0}{0}$. Using l'Hôpital's Rule, we have:

$$
\lim _{x \rightarrow \infty} x \tan \left(\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{-1}{x^{2}} \sec ^{2}\left(\frac{1}{x}\right)}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow \infty} \sec ^{2}\left(\frac{1}{x}\right)=1
$$

Example $9 \quad$ Find $\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}$
It is not difficult to see that the limit is an indeterminate form of type $0 \cdot \infty$. We can easily convert it into the quotient $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}}$ which gives an indeterminate form of type $\frac{\infty}{\infty}$. Using l'Hôpital's Rule twice, we obtain:

$$
\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{2 x e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3 x}{2 e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3}{4 x e^{x^{2}}}=0
$$

In the event that the limit $\lim _{x \rightarrow a}[f(x)-g(x)]$ produces an indeterminate form of type $\infty-\infty$, we can convert it into a type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by factoring out a common factor, by rationalization, or by using a common denominator.

Example 10 Find $\lim _{x \rightarrow \infty}\left(x-x^{2}\right)$
Since $\lim _{x \rightarrow \infty} x=\infty$ and $\lim _{x \rightarrow \infty} x^{2}=\infty$ the limit is an indeterminate form of type $\infty-\infty$. We convert this by factoring a common factor:

$$
\lim _{x \rightarrow \infty}\left(x-x^{2}\right)=\lim _{x \rightarrow \infty} x(1-x)=-\infty
$$

Example 11 Find $\lim _{x \rightarrow \infty}\left(x e^{1 / x}-x\right)$
Since $\lim _{x \rightarrow \infty} x e^{1 / x}=\infty$ and $\lim _{x \rightarrow \infty} x=\infty$ the limit is an indeterminate form of type $\infty-\infty$. We factor out a common factor to obtain the limit $\lim _{x \rightarrow \infty} x\left(e^{1 / x}-1\right)$ which is an indeterminate form of type $0 \cdot \infty$. We then have to convert it into the quotient $\lim _{x \rightarrow \infty} \frac{e^{1 / x-1}}{\frac{1}{x}}$ which is now an indeterminate form of type $\frac{0}{0}$. Using l'Hôpital's Rule, we have:

$$
\lim _{x \rightarrow \infty}\left(x e^{1 / x}-x\right)=\lim _{x \rightarrow \infty} x\left(e^{1 / x}-1\right)=\lim _{x \rightarrow \infty} \frac{e^{1 / x}-1}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{-1}{x^{2}}\right) e^{1 / x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow \infty} e^{1 / x}=1
$$

Example 12 Find $\lim _{x \rightarrow \infty}(x-\sqrt{x+2})$
It's easily seen that the given limit is of the indeterminate form of type $\infty-\infty$. We can convert it into an indeterminate form of type $\frac{\infty}{\infty}$ using rationalization:

$$
\lim _{x \rightarrow \infty}(x-\sqrt{x+2})=\lim _{x \rightarrow \infty}(x-\sqrt{x+2})\left(\frac{x+\sqrt{x+2}}{x+\sqrt{x+2}}\right)=\lim _{x \rightarrow \infty} \frac{x^{2}-(x+2)}{x+\sqrt{x+2}}
$$

And then we apply l'Hôpital's Rule:

$$
\lim _{x \rightarrow \infty}(x-\sqrt{x+2})=\lim _{x \rightarrow \infty} \frac{x^{2}-(x+2)}{x+\sqrt{x+2}}=\lim _{x \rightarrow \infty} \frac{2 x-1}{1+\frac{1}{2 \sqrt{x+2}}}=\infty
$$

D Dawson College - Mathematics Department - Integral Calculus for Social Science
Example 13 Find $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$
Since $\lim _{x \rightarrow 1} \frac{x}{x-1}=\infty$ and $\lim _{x \rightarrow 1} \frac{1}{\ln x}=\infty$ the limit is an indeterminate form of type $\infty-\infty$. We must first convert this using a common denominator:

$$
\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)=\lim _{x \rightarrow 1}\left(\frac{x \ln x}{(x-1) \ln x}-\frac{x-1}{(x-1) \ln x}\right)=\lim _{x \rightarrow 1} \frac{x \ln x-x+1}{(x-1) \ln x}
$$

Since $\lim _{x \rightarrow 1}(x \ln x-x+1)=0$ and $\lim _{x \rightarrow 1}(x-1) \ln x=0$ the limit is now an indeterminate form of type $\frac{0}{0}$. We can therefore apply l'Hôpital's Rule.

$$
\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)=\lim _{x \rightarrow 1} \frac{x \ln x-x+1}{(x-1) \ln x}=\lim _{x \rightarrow 1} \frac{\ln x+\left(\frac{1}{x}\right) x-1}{\ln x+\left(\frac{1}{x}\right)(x-1)}=\lim _{x \rightarrow 1} \frac{\ln x}{\ln x+1-\frac{1}{x}}
$$

Since the limits of both the numerator and denominator are still 0 , we apply l'Hôpital's Rule again.

$$
\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)=\lim _{x \rightarrow 1} \frac{\ln x}{\ln x+1-\frac{1}{x}}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}=\frac{1}{1+1}=\frac{1}{2}
$$

EXERCISES Find each limit. Use L'Hôpital's Rule where appropriate. Otherwise use a more elementary method.

1. $\lim _{x \rightarrow 3} \frac{2 x^{2}-3 x-9}{x^{2}-2 x-3}$
2. $\lim _{x \rightarrow \infty} \frac{4 x^{3}+x-3}{x^{2}-5 x+8}$
3. $\lim _{x \rightarrow 1} \frac{2 x^{3}-x^{2}-4 x+3}{3 x^{3}-5 x^{2}+x+1}$
4. $\lim _{x \rightarrow \infty} \frac{6 x-5}{4 x^{2}+7 x+9}$
5. $\lim _{x \rightarrow 0} \frac{3 x^{2}+8 x}{5 x^{3}}$
6. $\lim _{x \rightarrow \infty} \frac{x^{2}-7 x-10}{6 x^{2}-x-1}$
7. $\lim _{x \rightarrow 0} \frac{1-e^{x}}{2 x}$
8. $\lim _{x \rightarrow 0} \frac{x^{2}+x}{\sin 3 x}$
9. $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{1-\cos x}$
10. $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}$
11. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin x}$
12. $\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{5 x^{2}}$
13. $\lim _{x \rightarrow \infty} \frac{e^{3 x}}{\ln x}$
14. $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}$
15. $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{1-\cos x}$
16. $\lim _{x \rightarrow \infty} \frac{\sqrt{x-1}}{4 x+5}$
17. $\lim _{x \rightarrow 1} \frac{\ln x}{\sin (x-1)}$
18. $\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{\sqrt{x}}$
19. $\lim _{x \rightarrow \infty} \frac{e^{x}+x}{\ln x}$
20. $\lim _{x \rightarrow 1} \frac{e^{x-1}-1}{(x-1)^{3}}$
21. $\lim _{x \rightarrow \infty} \frac{\ln (x-10)}{\ln (4 x+1)}$
22. $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\ln (x+1)}$
23. $\lim _{x \rightarrow \infty} \frac{e^{4 x}}{e^{3 x}+x}$
24. $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{5 x}-1}$
25. $\lim _{x \rightarrow 0^{+}} x^{3} \ln x$
26. $\lim _{x \rightarrow \infty} x^{2} e^{-x}$
27. $\lim _{x \rightarrow \infty} x \tan \left(\frac{2}{x}\right)$
28. $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+1}\right)$
29. $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
30. $\lim _{x \rightarrow \infty}\left(\sqrt{x}-x^{2}\right)$

SOLUTIONS

1. $\lim _{x \rightarrow 3} \frac{2 x^{2}-3 x-9}{x^{2}-2 x-3} \quad\left(\operatorname{type} \frac{0}{0}\right)$
$=\lim _{x \rightarrow 3} \frac{4 x-3}{2 x-2}=\frac{9}{4}$
2. $\lim _{x \rightarrow \infty} \frac{4 x^{3}+x-3}{x^{2}-5 x+8} \quad$ (type $\frac{\infty}{\infty}$)
$=\lim _{x \rightarrow \infty} \frac{12 x^{2}+1}{2 x-5} \quad\left(\right.$ type $\left.\frac{\infty}{\infty}\right)$
$=\lim _{x \rightarrow \infty} \frac{24 x}{2}=\infty$
3. $\lim _{x \rightarrow 1} \frac{2 x^{3}-x^{2}-4 x+3}{3 x^{3}-5 x^{2}+x+1} \quad\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 1} \frac{6 x^{2}-2 x-4}{9 x^{2}-10 x+1} \quad\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 1} \frac{12 x-2}{18 x-10}=\frac{10}{8}=\frac{5}{4}$
4. $\lim _{x \rightarrow \infty} \frac{6 x-5}{4 x^{2}+7 x+9}$ (type $\frac{\infty}{\infty}$)
$=\lim _{x \rightarrow \infty} \frac{6}{8 x+7}=0$
5. $\lim _{x \rightarrow 0} \frac{3 x^{2}+8 x}{5 x^{3}}\left(\right.$ type $\left.\frac{0}{0}\right)$

$$
=\lim _{x \rightarrow 0} \frac{6 x+8}{15 x^{2}}=\infty
$$

6. $\lim _{x \rightarrow \infty} \frac{x^{2}-7 x-10}{6 x^{2}-x-1}$ (type $\frac{\infty}{\infty}$)
$=\lim _{x \rightarrow \infty} \frac{2 x-7}{12 x-1} \quad\left(\right.$ type $\left.\frac{\infty}{\infty}\right)$
$=\lim _{x \rightarrow \infty} \frac{2}{12}=\frac{2}{12}=\frac{1}{6}$
7. $\lim _{x \rightarrow 0} \frac{1-e^{x}}{2 x} \quad\left(\operatorname{type} \frac{0}{0}\right)$

$$
=\lim _{x \rightarrow 0} \frac{-e^{x}}{2}=-\frac{1}{2}
$$

8. $\lim _{x \rightarrow 0} \frac{x^{2}+x}{\sin 3 x} \quad\left(\operatorname{type} \frac{0}{0}\right)$
$=\lim _{x \rightarrow 0} \frac{2 x+1}{3 \cos 3 x}=\frac{1}{3}$
9. $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{1-\cos x} \quad\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 0^{0}} \frac{\cos x}{\sin x}=\infty$
10. $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x}=0$
11. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin x} \quad\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{\cos x}=2$
12. $\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{5 x^{2}}\left(\operatorname{type} \frac{0}{0}\right)$
$=\lim _{x \rightarrow 0} \frac{e^{x}-1}{10 x} \quad\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 0} \frac{e^{x}}{10}=\frac{1}{10}$
13. $\lim _{x \rightarrow \infty} \frac{e^{3 x}}{\ln x} \quad\left(\right.$ type $\left.\frac{\infty}{\infty}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\left[3 e^{3 x}\right]}{\left[\frac{1}{x}\right]}\left(\text { type } \frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow \infty} 3 x e^{3 x}=\infty
\end{aligned}
$$

14. $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}\left(\operatorname{type} \frac{0}{0}\right)$

$$
=\lim _{x \rightarrow 1} \frac{[1]}{\left[\frac{1}{2 \sqrt{x}}\right]}=2
$$

15. $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{1-\cos x} \quad\left(\operatorname{type} \frac{0}{0}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\left[\frac{1}{2 \sqrt{x}}\right]}{[\sin x]} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{2 \sqrt{x} \sin x}=\infty
\end{aligned}
$$

16. $\lim _{x \rightarrow \infty} \frac{\sqrt{x-1}}{4 x+5}$ (type $\frac{\infty}{\infty}$)

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\left[\frac{1}{2 \sqrt{x-1}}\right]}{[4]} \\
& =\lim _{x \rightarrow \infty} \frac{1}{8 \sqrt{x-1}}=0
\end{aligned}
$$

17. $\lim _{x \rightarrow 1} \frac{\ln x}{\sin (x-1)} \quad\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 1} \frac{\left[\frac{1}{x}\right]}{[\cos (x-1)]}=1$
18. $\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{\sqrt{x}} \quad\left(\right.$ type $\left.\frac{\infty}{\infty}\right)$
$=\lim _{x \rightarrow \infty} \frac{\left[\frac{1}{x+1}\right]}{\left[\frac{1}{2 \sqrt{x}}\right]}$
$=\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{x+1} \quad\left(\right.$ type $\left.\frac{\infty}{\infty}\right)$
$=\lim _{x \rightarrow \infty} \frac{\left[\frac{1}{\sqrt{x}}\right]}{[1]}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}}=0$
19. $\lim _{x \rightarrow \infty} \frac{e^{x}+x}{\ln x} \quad$ (type $\frac{\infty}{\infty}$)
$=\lim _{x \rightarrow \infty} \frac{\left[e^{x}+1\right]}{\left[\frac{1}{x}\right]}$
$=\lim _{x \rightarrow \infty} x\left(e^{x}+1\right)=\infty$
20. $\lim _{x \rightarrow 1} \frac{e^{x-1}-1}{(x-1)^{3}} \quad\left(\right.$ type $\left.\frac{0}{0}\right)$
$=\lim _{x \rightarrow 1} \frac{e^{x-1}}{3(x-1)^{2}}=\infty$
(D) Dawson College - Mathematics Department - Integral Calculus for Social Science
21. $\lim _{x \rightarrow \infty} \frac{\ln (x-10)}{\ln (4 x+1)}$ (type $\frac{\infty}{\infty}$)

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\left[\frac{1}{x-10}\right]}{\left[\frac{4}{4 x+1}\right]} \\
& =\lim _{x \rightarrow \infty} \frac{4 x+1}{4 x-40} \quad\left(\text { type } \frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow \infty} \frac{4}{4}=\frac{4}{4}=1
\end{aligned}
$$

22. $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\ln (x+1)}\left(\right.$ type $\left.\frac{0}{0}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left[\frac{1}{2 \sqrt{x}}\right]}{\left[\frac{1}{x+1}\right]} \\
& =\lim _{x \rightarrow 0} \frac{x+1}{2 \sqrt{x}}=\infty
\end{aligned}
$$

23. $\lim _{x \rightarrow \infty} \frac{e^{4 x}}{e^{3 x}+x}\left(\operatorname{type} \frac{\infty}{\infty}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{4 e^{4 x}}{3 e^{3 x}+1} \quad\left(\text { type } \frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow \infty} \frac{16 e^{4 x}}{9 e^{3 x}}=\lim _{x \rightarrow \infty} \frac{16 e^{x}}{9}=\infty
\end{aligned}
$$

24. $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{5 x}-1} \quad\left(\operatorname{type} \frac{0}{0}\right)$

$$
=\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{5 e^{5 x}}=\lim _{x \rightarrow 0} \frac{2}{5 e^{3 x}}=\frac{2}{5}
$$

25. $\lim _{x \rightarrow 0^{+}} x^{3} \ln x \quad$ (type $0 \cdot \infty$)

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-3}} \quad \text { (type } \frac{\infty}{\infty} \text {) } \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-3 x^{-4}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x^{3}}{-3}=0
\end{aligned}
$$

26. $\lim _{x \rightarrow \infty} x^{2} e^{-x} \quad$ (type $0 \cdot \infty$)

$$
=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} \quad \text { (type } \frac{\infty}{\infty} \text {) }
$$

$$
=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}} \quad\left(\text { type } \frac{\infty}{\infty}\right)
$$

$$
=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0
$$

27. $\lim _{x \rightarrow \infty} x \tan \left(\frac{2}{x}\right) \quad$ (type $\infty \cdot 0$)

$$
=\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{2}{x}\right)}{\frac{1}{x}} \quad \quad \text { (type } \frac{0}{0} \text {) }
$$

$$
=\lim _{x \rightarrow \infty} \frac{\left(\sec ^{2}\left(\frac{2}{x}\right)\right)\left(-2 x^{-2}\right)}{-x^{-2}}
$$

$$
=\lim _{x \rightarrow \infty} 2 \sec ^{2}\left(\frac{2}{x}\right)=2
$$

28. $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+1}\right) \quad$ (type $\infty-\infty$)

$$
=\lim _{x \rightarrow \infty} \frac{\left(x-\sqrt{x^{2}+1}\right)}{1} \cdot \frac{\left(x+\sqrt{x^{2}+1}\right)}{\left(x+\sqrt{x^{2}+1}\right)}
$$

$$
=\lim _{x \rightarrow \infty} \frac{x^{2}-\left(x^{2}+1\right)}{x+\sqrt{x^{2}+1}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{-1}{x+\sqrt{x^{2}+1}}=0
$$

D Dawson College - Mathematics Department - Integral Calculus for Social Science
29. $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right) \quad$ (type $\infty-\infty$)
$=\lim _{x \rightarrow 0^{+}} \frac{\left(e^{x}-1\right)-x}{x\left(e^{x}-1\right)} \quad$ (type $\frac{0}{0}$)
$=\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{1\left(e^{x}-1\right)+\left(e^{x}\right) x} \quad$ (type $\frac{0}{0}$)
$=\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{e^{x}+\left(e^{x}\right) x+1\left(e^{x}\right)}$
$=\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{e^{x}(2+x)}$
$=\lim _{x \rightarrow 0^{+}} \frac{1}{(2+x)}=\frac{1}{2}$
30. $\lim _{x \rightarrow \infty}\left(\sqrt{x}-x^{2}\right) \quad$ (type $\infty-\infty$)
$=\lim _{x \rightarrow \infty} \sqrt{x}\left(1-x^{3 / 2}\right)=-\infty$

