DAWSON COLLEGE
 Mathematics Department

FINAL EXAMINATION
 Calculus II (201-NYB-05)-Open
 Winter 2022

Instructor:
Noushin Sabetghadam

Student Name:

\qquad
Student ID. \#: \qquad

Instructions:

- Print your name and ID number in the provided space.
- Solve the problems in the space provided for each question and show all your work clearly and indicate your final answer.
- Only calculators Sharp EL 531.X/ XG/XT are permitted.
- The last page is a copy of the formula sheet. Note that the examination booklet must be returned intact.

This examination consists of 13 questions. Please ensure that you have a complete examination booklet before starting.

Q1/6	Q2/6	Q3/6	Q4/20	Q5/6	Q6/6	Q7/8	Q8/6	Q9/6	Q10/6	Q11/6	Q12/12	Q13/6	Sum

(1) (6 marks) Use ONLY the Riemann Sum technique to evaluate the integral $\int_{-1}^{3}\left(2 x^{2}-3 x\right) d x$.
(2) (6 marks) Use the Fundamental Theorem of Calculus to find the derivative of the given function.

$$
g(x)=\int_{\cos x}^{3 x^{2}} \frac{\sqrt{t+\sqrt{t}}}{1-t} d t
$$

(3) (6 marks) Find the average value of $f(x)=\frac{1}{x^{2}} \cos \left(\frac{2 \pi}{x}\right)$ over the interval $[1,4]$.
(4) Find the following integrals.
(a) (6 marks) $\int \sin ^{4}(3 x) \cos ^{5}(3 x) d x$
(b) $(6$ marks $) \int \frac{d x}{\left(16-x^{2}\right)^{\frac{3}{2}}}$
(c) $(8$ marks $) \int \frac{3 x^{2}-3 x+20}{x\left(x^{2}+4\right)} d x$
(5) (6 marks) Find the volume of the solid obtained when the region bounded by $y=\sqrt{x-1}$ and $y=x-1$ is rotated about the x -axis.
(6) (6 marks) Compute the following improper integral or show it diverges.

$$
\int_{-\infty}^{2} x e^{x} d x
$$

(7) (8 marks) Nintendo decides to sell a new gaming system and does market and internal research to determine the supply and demand curves:

$$
D(x)=470+\frac{330,000}{x+1000}, \quad S(x)=510-\frac{110,000}{x+1000}
$$

Where $D(x)$ is the demand in dollars/unit and $S(x)$ is the supply in dollars/unit and x is the units of the gaming system sold/produced. Find:
(a) The equilibrium market quantity and price.
(b) Find the Producers' surplus. (No decimal is needed)
(8) (6 marks) Find the general solution of the differential equation $\left(y^{2}+1\right) e^{x}-y y^{\prime}=0$.
(9) ($\mathbf{6}$ marks) Determine whether the following sequence is convergent or divergent. Find its limit if it converges.

$$
a_{n}=\left(\frac{n+1}{n}\right)^{3 n}
$$

(10) (6 marks) Determine whether the series converges or diverges. If it converges, find its sum.

$$
\sum_{n=0}^{\infty} \frac{5^{(n-1)}-2^{(2 n)}}{10^{(n+1)}}
$$

(11) (6 marks) Find the Taylor series representation of $f(x)=\frac{2}{1-x}$ centred at $a=2$. Then find the radius of convergence.
(12) Determine whether the given series are convergent or divergent. Justify your answer.
(a) (4 marks) $\sum_{n=0}^{\infty} \frac{1+5 n}{\sqrt{4 n^{2}+2 n+1}}$
(b) (4 marks) $\sum_{n=3}^{\infty} \frac{\ln n}{n}$
(c) (4 marks) $\sum_{n=0}^{\infty} \frac{4 n}{3 n^{3}+n}$
(13) (6 marks) Use the Simpson's rule with $n=4$ to approximate the value of the definite integral. Round the final answer up to five decimal places.

$$
\int_{1}^{3} \frac{e^{x}}{\sqrt{x+1}} d x
$$

Dawson College

Mathematics Department
Calculus II, 201-NYB-05(Commerce/Open)
Information Sheet

$$
\begin{aligned}
& \sum_{i=1}^{n} 1=n \\
& \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
& \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4} \\
& \int_{a}^{b} f(x) d x \approx \frac{\triangle x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
& \int_{a}^{b} f(x) d x \approx \frac{\triangle x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
& \mathbf{C S}=\int_{0}^{\bar{x}} D(x) d x-\bar{p} \bar{x} \\
& \mathbf{P}_{\mathbf{n}}(\mathbf{x})=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

(1) $\frac{20}{3}$
(2) $g^{\prime}(x)=\frac{\sqrt{3 x^{2}+\sqrt{3 x^{2}}}}{1-3 x^{2}} \cdot 6 x+\frac{\sqrt{\cos x+\sqrt{\cos x}}}{1-\cos x} \cdot \sin x$
(3) $f_{\text {ave }}=\frac{-1}{6 \pi}$
(4) (a) $I=\frac{\sin ^{5}(3 x)}{15}-\frac{2 \sin ^{7}(3 x)}{21}+\frac{\sin ^{9}(3 x)}{27}+C$
(b) $I=\frac{x}{64 \sqrt{1-\frac{x^{2}}{16}}}$
(c) $I=5 \ln |x|-\ln \left(x^{2}+4\right)-\frac{3}{2} \arctan \frac{x}{2}+C$
(5) $V=\frac{1}{6} \pi$
(6) $I=e^{2}$, Convergent
(7) (a) $x=10000, p=500 \$$
(b) $163,768 \$$
(8) $y= \pm \sqrt{C e^{2 e^{x}}-1}$
(9) It converges to 3 .
(10) It converges to $\frac{-19}{150}$.
(11) $\sum_{0}^{\infty} 2(-1)^{n+1}(x-2)^{n}$, the radius of convergence is 1 .
(12) (a) Divergent using the test for divergence.
(b) Divergent using the integral test.
(c) Convergent using limit comparison test.
(13) 9.64703

