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1. Given the graph of f (x) = ex2
.

(a) (3 marks) Find an approximation of the definite integral of f (x) = ex2
on the interval [1/5, 4/5], using

the right end point as sample points and 3 approximating rectangles.

Answer: ≈ 0.9

(b) (1 mark) Sketch the approximating rectangles.

(c) (1 mark) Is the estimate an overestimate, underestimate or neither? Justify.

Answer: overestimate

2. Consider the region in the first quadrant R bounded by y = ex2
, x = 1 and y = 1. See the graph of y = ex2

in
problem 1.

(a) (5 marks) Use the cylindrical shell method to find the volume of the solid obtained by revolving the
region R about the y-axis.

Answer: π(e−2)

(b) (4 marks) Using discs or washers, set up, but do not evaluate, the integral required to find the volume
of the solid obtained by revolving the region R about the line y = 1

2 .

Answer: ∫ 1

0
π

((
ex2

− 1
2

)2

−
(

1
2

)2
)

dx



201-NYB-05 S01-S14 - Final Examination Page 3 of 6 May 23rd, 2023

3. (5 marks) Consider the region(s) R bounded by the following: y = x2 − x−1, y− x = 2, x = 4. Set up, but
do not evaluate, an integral or integrals that represents the area of the region.

Answer:
∫ 3
−1 x+2− (x2 − x−1) dx+

∫ 4
3 x2 − x−1− (x+2) dx

4. (5 marks) Find the exact length of the curve y(x) =
∫ x

3

√
t2 +2t dt on [1,4].

Answer: 21
2

5. (5 marks) Evaluate the following integral∫
π/12

−π/12

(
(x2 +1)sinx

x4 +1
+ cos2 2x

)
dx

Answer: π

12 +
√

3
8

6. (5 marks) Find the average value of f (x) = x8
√

x3+1
on the interval [0,2].

Answer: 496
45

7. (5 marks) Evaluate the following integral∫ 1/3

0

1
(9x2 +1)5/2 dx

Answer: 5
18
√

2

8. (5 marks) Evaluate the following integral∫ 7x2 + x+1
x3 + x2 + x

dx

Answer: ln |x|+3ln |x2 + x+1|− 6√
3

arctan
(

2x+1√
3

)
+C

9. (5 marks) Evaluate the following integral∫ e4x + e2x + ex sec(ln(ex +1))
ex +1

dx
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Answer: e3x − e2x +2ex − ln |ex +1|+ ln |sec(ln(ex +1))+ tan(ln(ex +1)) |+C

10. (5 marks) Evaluate the improper integral or show it diverges∫
∞

1

lnx
x3/2 dx

Answer: 4

11. (5 marks) Evaluate the improper integral or show it diverges∫ 3π/2

0

cosθ√
1− sinθ

dθ

Answer: 2−2
√

2

12. (5 marks) Given that

1. f (x) and g(x) are continuous functions on R,

2. g(x)≥ f (x) on [0, 3] and that the area between f (x) and g(x) on [0, 3] is 7,

3.
∫ 3

0

(
f (x)−7g(x)

)
dx = 3.

Find
∫ 0

3
g(x) dx.

Answer: 5
3

13. (3 marks) Find a formula for the general term an of the sequence, assuming that the pattern of the first few
terms continues.{

1+
√

2, 3, 1+
√

8, 5, 1+
√

32, 9, 1+
√

128, . . .
}

Answer: an = 1+
√

2n

14. (5 marks) Determine whether the sequence converges or diverges. If it converges, find the limit. Hint:
Evaluate the limit as a definite integral.

an =
n

∑
i=1

tan2 ( i
n

)
n
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Answer: tan(1)−1

15. Determine whether the series are convergent or divergent. Justify your answer.

(a) (5 marks)
∞

∑
n=1

n33n +n√
n+n34n

Answer: converges

(b) (5 marks)
∞

∑
n=1

3n
n+ e−n

Answer: diverges

16. Given the series
∞

∑
n=1

ln
(

arctan(n)
arctan(n+1)

)
(a) (3 marks) Find an expression for the nth partial sum.

Answer: Sn = ln
(

π

4

)
− ln(arctan(n+1))

(b) (2 marks) Use part a. to determine whether the series is conververgent or divergent. If it is convergent,
find its sum.

Answer: ln
(1

2

)
17. (5 marks) Find the radius and interval of convergence of the power series

∞

∑
n=1

an(x) where an(x) =
(3x−1)n

2n√n

given that lim
n→∞

∣∣∣∣an+1(x)
an(x)

∣∣∣∣= |3x−1|
2

.

Answer: R = 2
3 , (−1

3 ,1]
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18. (4 marks) Find the Taylor series of f (x) = 1√
12+7x

about x = 3 given that

f (x) =
1√

12+7x

f ′(x) =
−7

2(12+7x)3/2

f ′′(x) =
3 ·72

22(12+7x)5/2

f ′′′(x) =
−3 ·5 ·73

23(12+7x)7/2

f (4)(x) =
3 ·5 ·7 ·74

24(12+7x)9/2

f (5)(x) =
−3 ·5 ·7 ·9 ·75

25(12+7x)11/2

Answer:
1√
33

+
∞

∑
n=1

(−1)n7n1 ·3 ·5 ·7 · · ·(2n−1)
2nn!(

√
33)2n+1

(x−3)n

19. (4 marks) Given that the series
∞

∑
n=1

an is convergent. Determine whether the series
∞

∑
n=1

arccos(an) is conver-

gent.

Answer: divergent


