Polynomials Long Division

In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalised version of the familiar arithmetic technique called long division. We illustrate the algorithm trough the examples below.

An Illustrative Example. Given the rational expression

$$
\frac{x^{3}-10 x^{2}+17}{x-4}
$$

divide $x^{3}-10 x^{2}+17$ (the dividend or the numerator) by $x-4$ (the divisor or the denominator).

1. We first set up the division: $x - 4 \longdiv { x ^ { 3 } - 1 0 x ^ { 2 } + 0 x + 1 7 }$.
2. We now divide the leading term of the divided, namely x^{3}, by the leading term of the divisor, which is in this case x, (i.e., $x^{3} \div x=x^{2}$) and then place the result above the bar:

$$
\begin{array}{ll}
x-4 & \frac{x^{2}}{\mid x^{3}-10 x^{2}+0 x+17}
\end{array}
$$

3. Next we multiply the divisor by the result just obtained $\left(x^{2}(x-4)=x^{3}-4 x^{2}\right)$ and write the result under the first two terms of the numerator:

$$
\begin{array}{ll}
x-4 & \frac{x^{2}}{\mid} \begin{array}{l}
x^{3}-10 x^{2}+0 x+17 \\
x^{3}-4 x^{2}
\end{array}
\end{array}
$$

4. Subtract then the product just obtained from the appropriate terms of the original numerator (being careful that subtracting something having a minus sign is equivalent to adding something having a plus sign), and write the result underneath $\left(\left(x^{3}-10 x^{2}\right)-\left(x^{3}-4 x^{2}\right)=-10 x^{2}+4 x^{2}=\right.$ $\left.-6 x^{2}\right)$. Then, "bring down" the next term from the numerator:

$$
\begin{array}{ll}
x-4 & \frac{x^{2}}{\mid} \begin{array}{l}
x^{3}-10 x^{2}+0 x+17 \\
\\
\end{array} \quad \frac{x^{3}-4 x^{2}}{-6 x^{2}}+0 x+17
\end{array}
$$

5. Repeat the previous three steps, except this time use the two terms that have just been written as the numerator:

$$
x-4 \quad \begin{aligned}
& \frac{x^{2}-6 x}{\mid x^{3}-10 x^{2}+0 x+17} \\
& \frac{x^{3}-4 x^{2}}{-6 x^{2}}+0 x+17 \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

6. Repeat 5 . This time, there is nothing to "pull down":

$$
\begin{aligned}
& \frac{x^{2}-6 x-24}{\mid x^{3}-10 x^{2}+0 x+17} \\
& \frac{x^{3}-4 x^{2}}{-6 x^{2}}+0 x+17 \\
& \frac{-6 x^{2}+24 x}{-24 x+17} \\
& \frac{-24 x+96}{-79}
\end{aligned}
$$

It is time to stop! The polynomial above the bar is the quotient, and the number left over (-79) is the remainder.

$$
\frac{\overbrace{x^{3}-10 x^{2}+17}^{\text {dividend }}}{\underbrace{x-4}_{\text {divisor }}}=\underbrace{x^{2}-6 x-24}_{\text {quotient }}+\frac{\overbrace{-79}^{\text {remainder }}}{x-4}
$$

Verification: It is recommended that each time we divide by L.D., we verify our computation according to the following:

$$
\text { numrator }=\text { denominator } \cdot \text { quotient }+ \text { remainder } .
$$

For instance, let us do the verification of the example above:

$$
\begin{aligned}
(x-4)\left(x^{2}-6 x-24\right)+(-79) & =x^{3}-6 x^{2}-24 x-4 x^{2}+24 x+96-79 \\
& =x^{3}-10 x^{2}+17 .
\end{aligned}
$$

Another Example Given $\frac{x^{4}+4 x^{3}-5 x^{2}-12 x+6}{x^{2}-3}$, use L.D. to find the quotient and the remainder.

Here are the computations:

$$
\begin{gathered}
x^{2}-3 \begin{array}{c}
\frac{x^{2}-4 x-2 \longleftarrow \text { quotient }}{\mid x^{4}+4 x^{3}-5 x^{2}-12 x+6} \\
\frac{x^{4}-3 x^{2}}{4 x^{3}-2 x^{2}-12 x+6} \\
\frac{4 x^{3}-12 x}{-2 x^{2}+6} \\
\frac{-2 x^{2}+6}{0 \longleftarrow} \\
0
\end{array} \\
\text { remainder }
\end{gathered}
$$

and as for the verification:

$$
\begin{aligned}
\left(x^{2}-3\right)\left(x^{2}+4 x-2\right)+0 & =x^{4}+4 x^{3}-2 x^{2}-3 x^{2}-12 x+6 \\
& =x^{4}+4 x^{3}-5 x^{2}-12 x+6
\end{aligned}
$$

there you go!

Exercises

Use long division to find the quotient and the remainder for each case.

1. $\frac{x^{2}+5 x+17}{x-3}$
2. $\frac{4 x^{3}+3 x-5}{x^{2}+1}$
3. $\frac{1-2 x^{2}+3 x^{3}}{x^{2}-2}$
4. $\frac{4 x^{4}+2 x^{2}+1}{2 x^{2}+1}$
5. $\frac{5+x^{2}-4 x^{3}}{x^{2}+x}$
6. $\frac{x^{4}+x^{2}+1}{x^{2}+1}$
7. $\frac{7-x^{5}}{x^{2}+x+1}$
8. $\frac{3 x^{4}-x^{3}+x}{x-2}$

Answers

1. $\frac{x^{2}+5 x+17}{x-3}=(x+8)+\frac{41}{x-3}$
2. $\frac{4 x^{3}+3 x-5}{x^{2}+1}=4 x+\frac{-x-5}{x^{2}+1}$
3. $\frac{1-2 x^{2}+3 x^{3}}{x^{2}-2}=3 x-2+\frac{6 x-3}{x^{2}-2}$
4. $\frac{4 x^{4}+2 x^{2}+1}{2 x^{2}+1}=2 x^{2}+\frac{1}{2 x^{2}+1}$
5. $\frac{7-x^{5}}{x^{2}+x+1}=-x^{3}+x^{2}-1+\frac{x+8}{x^{2}+x+1}$
6. $\frac{3 x^{4}-x^{3}+x}{x-2}=3 x^{3}+5 x^{2}+10 x+21+$
7. $\frac{5+x^{2}-4 x^{3}}{x^{2}+x}=-4 x+5+\frac{5-5 x}{x^{2}+x}$
8. $\frac{x^{4}+x^{2}+1}{x^{2}+1}=x^{2}+\frac{1}{x^{2}+1}$ $\frac{42}{x-2}$
